Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Methylbenzimidazolium thiocyanate

Shayma A. Shaker, Hamid Khaledi* and Hapipah Mohd Ali
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 12 October 2010; accepted 17 October 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=16.0$.

In the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{SCN}^{-}$, the nearly planar 2-methylbenzimidazolium cation [r.m.s. deviation $=0.0123(4) \AA$] is perpendicular to a mirror plane and the methyl H atoms are disordered about the mirror plane with equal occupancies. The thiocyanate anion also lies on a mirror plane. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the components into an infinite chain along the b axis.

Related literature

For related structures, see: Bhattacharya et al. (2004); Ding et al. (2004); Shaker et al. (2010); Huang et al. (2006). For the application of benzimidazole derivatives in crystal engineering, see: Cai et al. (2002). For the biological properties of benzimidazole derivatives, see: Refaat (2010); Ansari \& Lal (2009).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{SCN}^{-}$
$M_{r}=191.25$
Orthorhombic, Pnma
$a=9.879$ (2) \AA
$b=7.2157$ (15) \AA
$c=12.890$ (3) \AA
$V=918.9(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.40 \times 0.29 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.888, T_{\text {max }}=0.956$
10495 measured reflections 1133 independent reflections 1000 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
H atoms treated by a mixture of independent and constrained refinement
$S=1.01$
1133 reflections
71 parameters
1 restraint
$\Delta \rho_{\text {max }}=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.88(2)$	$2.00(2)$	$2.8627(16)$	$168(2)$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors thank the University of Malaya for funding this study (UMRG grant RG024/09BIO).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2616).

References

Ansari, K. F. \& Lal, C. (2009). J. Chem. Sci. 121, 1017-1025.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bhattacharya, R., Chanda, S., Bocelli, G., Cantoni, A. \& Ghosh, A. (2004). J. Chem. Crystallogr. 34, 393-400.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, C.-X., Tian, Y.-Q., Li, Y.-Z. \& You, X.-Z. (2002). Acta Cryst. C58, m459m460.
Ding, C.-F., Zhang, S.-S., Li, X.-M., Xu, H. \& Ouyang, P.-K. (2004). Acta Cryst. E60, o2441-o2443.
Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.
Shaker, S., Khaledi, H. \& Mohd Ali, H. (2010). Acta Cryst. E66, o2291.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Huang, X., Liu, J.-G. \& Xu, D.-J. (2006). Acta Cryst. E62, o1833-o1835.

supplementary materials

Acta Cryst. (2010). E66, o2913 [doi:10.1107/S1600536810042145]

2-Methylbenzimidazolium thiocyanate

S. A. Shaker, H. Khaledi and H. Mohd Ali

Comment

Benzimidazoles are a class of compounds with a wide variety of biological properties (Refaat, 2010; Ansari \& Lal, 2009) and applications in crystal-engineering (Cai et al., 2002). During our studies on coordination behavior of 2-methylbenzimidazole, the title crystal was obtained unexpectedly as a by-product. The structures of several compounds similar to present structure have been reported (Bhattacharya et al., 2004; Ding et al., 2004; Shaker et al., 2010; Huang et al., 2006).

The asymmetric unit of the title compound, contains one-half molecule of each component. The nearly planar 2-methylbenzimidazolium moiety (r.m.s $=0.0123 \AA$) is perpendicular to, and the thiocyanate ion lies on a mirror plane. In the crystal structure, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond links the molecules into an infinite chain along the b axis.

Experimental

An ethanolic solution (12 ml) of 2-methylbenzimidazole ($5 \mathrm{mmol}, 0.78 \mathrm{~g}$) was added to an aqueous solution (10 ml) of CuCl_{2}. $2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ followed by addition of an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{KSCN}(5 \mathrm{mmol})$.The resulting precipitates were filtered off. The colorless crystals of the title compound were obtained from the filtrate.

Refinement

The C-bound hydrogen atoms were placed at calculated positions ($\mathrm{C}-\mathrm{H} 0.95$ or $0.98 \AA$) and were treated as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ set to 1.2 or $1.5 U_{\mathrm{eq}}(\mathrm{C})$. The N -bound hydrogen atom was located in a difference Fourier map and refined with a distance restraint of $\mathrm{N}-\mathrm{H} 0.88$ (2) \AA.

Figures

Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation $(x,-y+3 / 2, z)$.

2-Methylbenzimidazolium thiocyanate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{SCN}^{-}$
$F(000)=400$
$M_{r}=191.25$
Orthorhombic, Pnma
$D_{\mathrm{x}}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

supplementary materials

Hall symbol: -P 2ac 2n
$a=9.879(2) \AA$
$b=7.2157(15) \AA$
$c=12.890(3) \AA$
$V=918.9(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.888, T_{\text {max }}=0.956$
10495 measured reflections

Cell parameters from 4285 reflections
$\theta=2.6-30.3^{\circ}$
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.40 \times 0.29 \times 0.15 \mathrm{~mm}$

1133 independent reflections
1000 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.6^{\circ}$
$h=-12 \rightarrow 12$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.00$

1133 reflections
71 parameters
1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0395 P)^{2}+0.9286 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	$-0.11964(6)$	0.2500	$0.31732(5)$	$0.02094(18)$	
N1	$0.15210(19)$	0.2500	$0.37930(15)$	$0.0193(4)$	
C1	$0.0383(2)$	0.2500	$0.35335(17)$	$0.0162(4)$	
H2	$0.2584(17)$	$0.485(2)$	$0.3813(13)$	0.019^{*}	
N2	$0.28838(12)$	$0.60009(17)$	$0.38143(10)$	$0.0155(3)$	
C2	$0.0609(2)$	0.7500	$0.38575(17)$	$0.0191(5)$	
H2A	0.0277	0.8779	0.3825	0.029^{*}	0.50
H2B	0.0299	0.6922	0.4503	0.029^{*}	0.50
H2BA	0.0258	0.6800	0.3264	0.029^{*}	0.50
C3	$0.2103(2)$	0.7500	$0.38283(15)$	$0.0156(4)$	
C4	$0.42343(15)$	$0.6534(2)$	$0.37939(11)$	$0.0148(3)$	
C5	$0.54317(15)$	$0.5525(2)$	$0.37848(11)$	$0.0179(3)$	
H5	0.5432	0.4209	0.3774	0.022^{*}	
C6	$0.66199(15)$	$0.6529(2)$	$0.37921(11)$	$0.0189(3)$	
H6	0.7460	0.5887	0.3797	0.023^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	$0.0159(3)$	$0.0182(3)$	$0.0287(3)$	0.000	$-0.0020(2)$	0.000
N 1	$0.0179(9)$	$0.0140(9)$	$0.0260(10)$	0.000	$0.0024(7)$	0.000
C 1	$0.0200(10)$	$0.0105(9)$	$0.0182(10)$	0.000	$0.0034(8)$	0.000
N 2	$0.0169(6)$	$0.0104(6)$	$0.0191(6)$	$-0.0018(5)$	$0.0000(5)$	$0.0004(5)$
C 2	$0.0170(10)$	$0.0192(11)$	$0.0211(11)$	0.000	$0.0015(8)$	0.000
C 3	$0.0193(10)$	$0.0151(10)$	$0.0126(9)$	0.000	$-0.0012(8)$	0.000
C 4	$0.0168(7)$	$0.0141(7)$	$0.0135(6)$	$-0.0007(6)$	$-0.0004(5)$	$0.0004(5)$
C 5	$0.0215(7)$	$0.0126(7)$	$0.0197(7)$	$0.0023(6)$	$-0.0015(6)$	$-0.0003(6)$
C 6	$0.0175(7)$	$0.0200(8)$	$0.0193(7)$	$0.0026(6)$	$-0.0007(6)$	$0.0001(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.628(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{BA}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.173(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.389(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.3289(18)$	$\mathrm{C} 4-\mathrm{C} 4$	$1.394(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.3888(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.379(2)$
$\mathrm{N} 2-\mathrm{H} 2$	$0.881(15)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.477(3)$	$\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$1.401(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500	
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800	$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 2$	$125.52(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	0.9800	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5$	$132.32(14)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$180.0(2)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 4$	$106.08(8)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	$109.44(13)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 4$	$121.60(9)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$	$124.8(12)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$116.72(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$125.7(12)$	109.5	

supplementary materials

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{BA}$	109.5	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6$	$121.67(9)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{BA}$	109.5	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.2
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{BA}$	109.5	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{H} 6$	119.2
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{N} 2^{\mathrm{i}}$	$108.97(18)$		

Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$)
$D — H \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$0.88(2)$	$2.00(2)$	$2.8627(16)$	$168(2)$

Fig. 1

